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Abstract. We consider random-walk transition matrices from large so-
cial and information networks. For these matrices, we describe and eval-
uate a fast method to estimate one column of the matrix exponential.
Our method runs in sublinear time on networks where the maximum
degree grows doubly logarithmic with respect to the number of nodes.
For collaboration networks with over 5 million edges, we find it runs in
less than a second on a standard desktop machine.

Keywords: Matrix exponential, Gauss-Southwell, local algorithms.

1 Introduction

The matrix exponential is a standard tool in network analysis. Its uses include
node centrality [9,11,10], link-prediction [15], graph kernels [14], and cluster-
ing [8]. For the particular problems of node centrality, graph kernels, and clus-
tering, what is most valuable is a coarse estimate of a column of the matrix
exponential. In this paper, we consider computing exp{P}ec where P is the
random-walk transition matrix for a directed or undirected graph and ec is the
cth column of the identity matrix. More precisely, and to establish some notation
for the paper, let G be an n × n adjacency matrix for a directed or undirected
graph, let e = [1, · · · , 1]T the vector (of appropriate dimensions) of all 1s, and
let D = diag(Ge) so that Dii = di is the degree of node i (and d = maxi{di}
is the maximum degree). We consider P = GD−1. This case suffices for many
of the problems studied in the literature and allows us to compute exponentials
of the negative normalized Laplacian −L̂ = D−1/2GD−1/2 − I as well. Observe
that

exp{D−1/2GD−1/2 − I}ec = e−1D−1/2exp{GD−1}D1/2ec

=
√
dce

−1D−1/2exp{GD−1}ec,
so computing a column of either −L̂ or P allows computation of the other at
the cost of scaling the solution vector.

� Supported by NSF CAREER award 1149756-CCF.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 68–79, 2013.
© Springer International Publishing Switzerland 2013

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit


Nearly-Sublinear Columnwise Matrix Exponential 69

Computing accurate matrix exponentials has a lengthy and “dubious” his-
tory [17]. Let A be a general n × n matrix that is large and sparse and let b
be a general vector. A popular method for computing exp{A}b involves using
an m-step Krylov approximation of the matrix A yielding A ≈ VmHmVT

m. If
we use this form, we can approximate exp{A}b ≈ Vmexp{H}e1. For m � n,
the computation is reduced to the much smaller exp{H} at the cost of using
m matrix-vector products to generate Vm. Such an approximation works well
for computing both the entire exponential exp{A} and its action on a vector:
exp{A}b. This idea underlies the implementation of the Matlab package Ex-
poKit [21], which has been a standard for computing exp{A}b for some time.

While these algorithms are fast and accurate (see references [13], [12], and
[2], for the numerical analysis), they depend on matrix-vector products with
the matrix P and orthogonalization steps between successive vectors. When a
Krylov method approximates a sparse matrix arising from a graph with a small
diameter, then the vectors involved in the matrix-vector products become dense
after two or three steps, even if the vector starting the Krylov approximation
has only a single non-zero entry. Subsequent matrix-vector products take O(|E|)
work where |E| is the number of edges in the graph. For networks with billions
of edges, we want an alternative to Krylov-based methods that prioritizes speed
and sparsity over accuracy. In particular, we would like an algorithm to estimate
a column of the matrix exponential in less work than a single matrix-vector
product.

Local methods perform a computation by accessing a small region of a matrix
or graph. These are a practical alternative to Krylov methods for solving massive
linear systems from network problems that have sparse right hand sides; see, for
instance, references [3,7]. Rather than matrix-vector products, these procedures
use steps that access only a single row or column of the matrix. We design a local
algorithm for computing exp{P}ec by translating the problem of computing the
exponential into solving a linear system, and then using a local algorithm.

We present an algorithm that approximates a specified column of exp{P}
for column stochastic P (Section 4, Figure 1). The algorithm uses the Gauss-
Southwell method (Section 2) for solving a linear system to approximate a degree
N Taylor polynomial (Section 3). The error after l iterations of the algorithm is
bounded by 1

N !N + l−1/(2d) as shown in Theorem 2, and the runtime is O(ld +
ld log(ld)) (Section 5.3). Given an input error ε, the runtime to produce a solution
vector with error less than ε is sublinear in n for graphs with d ≤ O(log logn).
We acknowledge that this doubly logarithmic scaling of the maximum degree
is unrealistic for social and information networks where the maximum degree
typically scales almost linearly with n. Nevertheless, the existence of a bound
suggests that it may be possible to improve or establish a matching lower-bound.

2 Local Computations and the Gauss-Southwell Method

The Gauss-Southwell (GS) iteration is a classic stationary method for solving a
linear system related to the Gauss-Seidel and coordinate descent methods [16]. It
is especially efficient when the desired solution vector is sparse or localized [7,5]
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and the goal is a coarse O(10−4) approximation. In these cases, GS produces
a sparse approximation that is accurate for only the largest entries. The coarse
nature of the GS approximation is acceptable because the primary use is to find
those nodes having the largest values in link-prediction or clustering problems.

The GS iteration is simple. Select the largest entry in the residual vector and
perform a coordinate descent step in that component of the solution. Let x(l)

and r(l) be the solution and residual iterates for Ax = b after l steps. In the

(l + 1)st step, pick q so that ml = r
(l)
q is the maximum magnitude entry of the

residual vector. Next update:

x(l+1) = x(l) +mleq

r(l+1) = r(l) −mlAeq.
(1)

The iteration consists of a single-entry update to x and a few updates to the
residual vector if A is sparse. This method converges for diagonally dominant
and symmetric positive definite linear systems [16].

Applied to a matrix from a graph, each iteration of GS requires at most
O(d log n) operations, where the logn term comes from heap updates to maintain
the largest residual entry. This procedure underlies Berkhin’s bookmark coloring
algorithm [5] for PageRank and a related method avoids the heap [3].

3 Exponentials via the Taylor Series Approximation

The GS method is most effective on sparse linear systems. We now design a large,
sparse linear system to compute a Taylor polynomial appromation of exp{P}ec.

3.1 The Truncated Taylor Series of the Exponential

The Taylor series for the matrix exp{A} is

exp{A} =

∞∑

k=0

1
k!A

k.

It converges for any matrix A. Truncating to N terms, we arrive at an algorithm.
If ‖A‖ is large with mixed sign then the summands Ak may be large and cancel
only in exact arithmetic, resulting in poor accuracy. However, a stochastic matrix
P is non-negative and has ‖P‖1 = 1, so the approximation converges quickly
and reliably (Lemma 1). Using an N -degree Taylor approximation to compute
the cth column results in a simple iteration. Let xN be the N -degree Taylor
approximation:

xN =

N∑

k=0

1
k!P

kec ≈ exp{P}ec.

Then

xN =

N∑

k=0

vk v0 = ec, v1 = Pv0, vk+1 = Pvk/k for k = 1, · · · , N.
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If xtrue is the actual column of exp{P} we are trying to compute, note that
xN converges to xtrue as N tends to infinity. For practical purposes, we want to
ensure that ‖xN−xtrue‖1 is small so that our approximation of xN is near xtrue.
The next Lemma shows that N = 11 yields a 1-norm error of 2.3× 10−9. This is
sufficiently small for our purposes and from now on, we use N = 11 throughout.

Lemma 1. The degree N Taylor approximation satisfies ‖xtrue−xN‖1 ≤ 1
N !N .

Proof. The truncation results in a simple error analysis:

‖xtrue − xN‖1 =

∥
∥
∥
∥
∥

∞∑

k=N+1

Pk

k!
ec

∥
∥
∥
∥
∥
1

=

∞∑

k=N+1

1

k!
, (2)

which follows because P and ec are nonnegative and P is column stochastic. By

factoring out 1
(N+1)! and majorizing (N+1)!

(N+1+k)! ≤
(

1
N+1

)k

for k ≥ 0, we finish:

‖xtrue − xN‖1 ≤
(

1
(N+1)!

) ∞∑

k=0

(
1

N+1

)k

= 1
(N+1)!

N+1
N (3)

after substituting the limit for the convergent geometric series. �

3.2 Forming a Linear System

We now devise a linear system to compute the intermediate terms vk and xN .
From the identity vk+1 = P

k+1 · vk we see that the vk satisfy

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

I
−P/1 I

−P/2
. . .

. . . I
−P/N I

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

v0

v1

...

...
vN

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

ec
0
...
...
0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

. (4)

For convenience of notation, let SN+1 be the (N +1)× (N+1) zero matrix with
first subdiagonal [ 11 ,

1
2 , · · · , 1

N ]. Let v = [v0; · · · ;vN ]. Then we can rewrite (4):

(IN+1 ⊗ In − SN+1 ⊗P)v = e1 ⊗ ec. (5)

The left- and right-hand sides of (5) are sparse, making this linear system a
candidate for a Gauss-Southwell iteration. Note also that we need never form
this large block-wise system explicitly and can work with it implicitly. Each row
of the system is uniquely defined by a node index i and a step index k.

We now show that approximating v will help approximate xN . Let M =
IN+1 ⊗ In − SN+1 ⊗ P from (5). With an approximation v̂ to the solution v,

we can approximate xN by summing components of v̂: x̂N =
∑N

k=0 v̂k. Given
that our primary purpose is computing xN , we want to know how accurately
x̂N approximates xN . With that in mind, we state the following:
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Lemma 2. If v̂ ≤ v component-wise, then ‖xN − x̂N‖1 = ‖v− v̂‖1.
Proof. The vector xN is the sum of the block-vectors composing v = [v0; · · · ;vN ],
and similarly x̂N is the sum of the block-vectors of v̂. Thus, eTv = eTxN , and
eT v̂ = eT x̂N . Since v̂ approaches v from below (by assumption), we have that
‖xN − x̂N‖1 = eT (xN − x̂N ) = eT (v − v̂) = ‖v − v̂‖1. �

4 Approximating the Taylor Polynomial with GS

We apply Gauss-Southwell (GS) to Mv = e1 ⊗ ec staring with x(0) = 0. The
block structure of M makes the solution and residual update simple. Recall that
q was the index of the largest entry in the residual and ml was the value of the
entry. Let eq = ek ⊗ ei where ek is a length N + 1 vector indicating the step
number and ei indicates the node number. By substituting this into (1), we find:

v(l+1) = v(l) +ml (ek ⊗ ei) (6)

r(l+1) = r(l) −mlM(ek ⊗ ei). (7)

Note that (6) simply adds mlei to the block of v corresponding to vk−1. How-
ever, since we intend to add together the vi at the end (to produce the full
Taylor approximation), in practice we simply add mlei directly to to our matrix-

exponential-column approximation vector x̂(l). Thus we satisfy the requirements
of Lemma 2. When k < N + 1 the residual update can also be adapted using

M(ek ⊗ ei) = ek ⊗ ei − ( 1kek+1 ⊗ (Pei)) (8)

In the case that k = N + 1, then SN+1eN+1 = 0, so we have simply M(eN+1 ⊗
ei) = eN+1 ⊗ ei. Substituting (8) into the residual update in (7) gives

r(l+1) = r(l) −mlek ⊗ ei +
ml

k (ek+1 ⊗Pei). (9)

Because the indices k and i are chosen so that the entry in the vector ek ⊗ ei
corresponds to the entry of r(l) that is largest, we have ml = (ek ⊗ ei)

T r(l).

Thus, (ek ⊗ ei)
T
r(l+1) = (ek ⊗ ei)

T
r(l) − ml (ek ⊗ ei)

T
ek ⊗ ei = 0, and this

iteration zeros out the largest entry of r(l) at each step. See Figure 1 for working
code.

5 Convergence Results for Gauss-Southwell

Our convergence analysis has two stages. First, we show that the algorithm in
Figure 1 produces a residual that converges to zero (Theorem 1). Second, we
establish the rate at which the error in the computed solution x̂N converges to
zero (Theorem 2). From this second bound, we arrive at a sublinear runtime
bound in the case of a slowly growing maximum degree.
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function x = gexpm(P,c,tol)

n = size(P,1); N = 11; sumr=1;

r = zeros(n,N+1); r(c,1) = 1; x = zeros(n,1); % the residual and solution

while sumr >= tol % use max iteration too

[ml,q]=max(r(:)); i=mod(q-1,n)+1; k=ceil(q/n); % use a heap in practice for max

r(q) = 0; x(i) = x(i)+ml; sumr = sumr-ml;% zero the residual, add to solution

[nset,~,vals] = find(P(:,i)); ml=ml/k; % look up the neighbors of node i

for j=1:numel(nset) % for all neighbors

if k==N, x(nset(j)) = x(nset(j)) + vals(j)*ml; % add to solution

else, r(nset(j),k+1) = r(nset(j),k+1) + vals(j)*ml;% or add to next residual

sumr = sumr + vals(j)*ml;

end, end, end % end if, end for, end while

Fig. 1. Pseudo-code for our nearly sublinear time algorithm as Matlab code. In practice,
the solution vector x and residual r should be stored as hash-tables, and the entries
of the residual as a heap. Note that the command [nset,∼,vals] = find(P(:,i))

returns the neighbors of the ith node (nset) along with values of P for those neighbors.

5.1 Convergence of the Residual

Theorem 1. Let P be column-stochastic and v(0) = 0. (Nonnegativity) The
iterates and residuals are nonnegative: v(l) ≥ 0 and r(l) ≥ 0 for all l ≥ 0.
(Convergence) The residual satisfies the following bound and converges to 0:

‖r(l)‖1 ≤
l∏

k=1

(
1− 1

2dk

)
≤ l(−

1
2d ) (10)

Proof. (Nonnegativity) Since v(0) = 0 we have r(0) = e1⊗ec−M·0 = e1⊗ec ≥ 0,
establishing both base cases. Now assume by way of induction that v(l) ≥ 0 and
r(l) ≥ 0. Then the GS update gives v(l+1) = v(l) +mlek ⊗ ei, and since ml ≥ 0
(because it is taken to be the largest entry in r(l), which we have assumed is
nonnegative) we have that v(l+1) ≥ 0.

From (9) we have r(l+1) = r(l) − mlek ⊗ ei +
ml

k ek+1 ⊗ Pei, but we have

assumed P is stochastic, so ek+1⊗Pei ≥ 0. Then, note that r(l)−mlek⊗ei ≥ 0
because by the inductive hypothesis r(l) ≥ 0 and subtracting ml simply zeros
out that entry of r(l). Thus, r(l+1) ≥ 0, as desired.

(Convergence) Because the residual is always nonnegative, we can use the
identity ‖r(l)‖1 = eT r(l). Left multiplying by eT in (9) yields ‖r(l+1)‖1 =
‖r(l)‖1 −ml +

ml

k

(
eTek+1 ⊗ eTPei

)
. Since we’ve assumed P is column stochas-

tic, eTPei = 1, and so this simplifies to ‖r(l+1)‖1 = ‖r(l)‖1 − ml +
ml

k =

‖r(l)‖1 −ml

(
1− 1

k

)
.

Since ml is the largest entry in r(l), we know it must be at least as big as the
average value of an entry of r(l). After l iterations, the residual can have no more
than dl nonzero entries, because no more than d nonzeros can be added each

iteration. Hence we have ml ≥ ‖r(l)‖1

dl . After the first iteration, we know k ≥ 2
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because the k = 1 block of r (denoted r0 in the notation of Section 3.2) is empty.

If we put these bounds together, we have: ‖r(l+1)‖1 ≤ ‖r(l)‖1− ‖r(l)‖1

dl

(
1− 1

2

)
=

‖r(l)‖1
(
1− 1

2dl

)
. Iterating this inequality yields the bound:

‖r(l)‖1 ≤
l∏

j=1

(1− 1
2dj ) · ‖r(0)‖1, (11)

and since r(0) = e1 ⊗ ec we have ‖r(0)‖1 = 1, proving the first inequality.
The second inequality of (10) follows from using the facts (1 + x) ≤ ex (for

x > −1) and log(l) <
∑l

j=1
1
j to write

l∏

j=1

(1− 1
2dj ) ≤ exp{− 1

2d

l∑

j=1

1
j } ≤ exp{− log l

2d } = l(−
1
2d). �

The inequality (1 + x) ≤ ex follows from the Taylor series ex = 1+ x+ o(x2),

and the lowerbound for the partial harmonic sum
∑l

j=1
1
j follows from the left-

hand rule integral approximation log(l) =
∫ l

1
1
xdx ≤ ∑l

j=1
1
j .

5.2 Convergence of Error

Although the previous theorem establishes that GS will converge, we need a
more precise statement about the error to bound the runtime. We will first state
such a bound and use it to justify the claim of “nearly” sublinear runtime before
formally proving it.

Theorem 2. In the notation described above, the error of the approximation
from l iterations of GS satisfies

‖x̂(l) − xtrue‖1 ≤ 1
N !N + e · l− 1

2d where e = exp(1). (12)

Nearly Sublinear Runtime Given an input tolerance ε, Theorem 2 shows that
the number of iterations l required to produce x̂(l) satisfying ‖xtrue− x̂(l)‖1 < ε
depends on d alone (since we have control over N , and so can just choose N
such that 1

N !N < ε/2). For 1
N !N < ε

2 to hold, it suffices to take N = 2 log(1/ε)
because 1

N !N < e−N/2 = ε
2 for N > 5. So N = 2 log(1/ε).

Next, we need a value of l for which e · l− 1
2d < ε

2 holds. Taking logs and
exponentiating yields the bound

l > exp{2d(1 + log(2) + log(1/ε))}. (13)

If d = C log logn for a constant C, then the desired error is guaranteed by

l > (log n)2C(1+log(2)+log(1/ε)) (14)

which grows sublinearly in n.
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Proof of Theorem 2 By the triangle inequality ‖xtrue− x̂(l)‖1 ≤ ‖xtrue−xN‖1+
‖xN−x̂(l)‖1, so we can apply Lemma 1 to get ‖xtrue−x̂(l)‖1 ≤ 1

N !N+‖xN−x̂(l)‖1,
and then Lemma 2 to obtain

‖xtrue − x̂(l)‖1 ≤ 1
N !N + ‖v− v̂(l)‖1. (15)

Theorem 1 gives the residual of the GS solution vector after l iterations, v̂(l), but
we want the error, i.e. the difference between v̂(l) and v. To obtain this quantity,
we use a standard relationship between the residual and error specialized to our
system: ‖v − v̂(l)‖1 ≤ ‖M−1‖1‖r(l)‖1. To complete the proof of Theorem 2, it
suffices, then, to show that ‖M−1‖1 ≤ e and use Theorem 1. The next lemma
establishes this remaining bound. We suspect that the following result is already
known in the literature and regret the tedious proof.

Lemma 3. Matrices M of the form M = IN+1 ⊗ In − SN+1 ⊗ P for column-
stochastic P satisfy ‖M−1‖1 ≤ e .

Proof. Write M = I − SN+1 ⊗ P and note that, since SN+1
N+1 = 0 we have

(SN+1 ⊗P)N+1 = 0, i.e. SN+1⊗P is nilpotent, soM = I−SN+1⊗P has inverse

M−1 = I+ (SN+1 ⊗P) + (SN+1 ⊗P)
2
+ · · ·+ (SN+1 ⊗P)

N
. (16)

To upperbound ‖M−1‖1 observe that each term (SN+1 ⊗P)j is nonnegative,
and so M−1 is itself nonnegative. Thus, ‖M−1‖1 is simply the largest column-
sum of M−1, i.e. maxk,i{eTM−1 (ek ⊗ ei)}. For convenience of notation, define
tk = eTM−1 (ek ⊗ ei) (we will show that this value, tk, is independent of i).
Multiplying (16) by eT and (ek ⊗ ei) and distributing produces

tk =
(
eT (ek ⊗ ei) + (eTSN+1ek)⊗ (eTPei) + · · ·+ (eTSN

N+1ek)⊗ (eTPNei)
)

(17)
but since eTPjei = 1 for all j, we end up with

tk = eTS0
N+1ek + eTS1

N+1ek + · · ·+ eTSN
N+1ek. (18)

This justifies the notation tk, since the value is seen to be independent of i here.
We set out to upperbound ‖M−1‖1, and we’ve now reduced the problem to

simply bounding the tk above. To do this, first note that SN+1ek = 1
kek+1 for all

1 ≤ k ≤ N . Repeatedly left multiplying by SN+1 establishes that for k+j > N+1

we have Sj
N+1ek = 0 if j ≥ 1, but for k+ j ≤ N we have Sj

N+1ek = (k−1)!
(k−1+j)!ek+j

for j = 0, · · · , N − k + 1 and k = 1, · · · , N . Using these we rewrite (18):

tk =
N+1−k∑

j=0

(k−1)!
(k−1+j)! . (19)

Observe that t1 =
∑N

j=0
1
j! ≤ e. The inequality tk+1 ≤ tk implies that tk ≤

t1 < e, and so to prove Lemma 3 it now suffices to prove this inequality. From

(19) we have tk =
∑N−k

j=0
(k−1)!

(k−1+j)! +
(k−1)!
N ! and tk+1 =

∑N−k
j=0

k!
(k+j)! . The general

terms satisfy (k−1)!
(k−1+j)! ≥ k!

(k+j)! because multiplying both sides by (k−1+j)!
(k−1)! yields

1 ≥ k
k+j . Hence tk ≥ tk+1, and so the lemma follows. �
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5.3 Complexity

Each iteration requires updating the residual for each adjacent node, which in
turn requires updating the residual heap. This step involves O(d log(ld)) work to
maintain the heap, since there are at most d entries added to r, and each update
of the heap requires O(log(ld)) work, where ld is an upperbound on the size of
the heap after l iterations. Since each vector add takes at most O(d) operations,
the total operation count for l iterations of the algorithm is O(ld+ ld log(ld)). If
we do not have a sublinear number of steps l, then note that heap updates never
take more than log(nN) work.

6 Experimental Results

We evaluate this method on a desktop computer with an Intel i7-990X, 3.47 GHz
CPU and 24 GB of RAM. As described below, we implement two variations of
our algorithm in C++ using the Matlab MEX interface. The graphs we use come
from a variety of sources and range between 103 and 107 nodes and edges. All are
undirected and connected. They include the dblp and flickr graphs [7], Newman’s
netscience, condmat-2003, and condmat-2005 graphs [18,19], and Arenas’s pgp
graph [6]. These results are representative of a larger collection. In the spirit of
reproducible research, we make our code available. See the URL in the title.

6.1 Notes on Implementation

We do not yet have a fully efficient implementation of our algorithm. In partic-
ular, we maintain full solution vectors and full residual vectors that take O(n)
and O(nN) work to initialize and store. In the future, we plan to use a hash
table for these vectors. For the current scale of our graphs – 500, 000 nodes – we
do not expect this change to make a large difference. We found that the runtime
of Gauss-Southwell varied widely due to our use of the heap structure (see the
TSGS line in Figure 3). To address this performance, we implemented an idea
inspired by Andersen et al.’s replacement of a heap with a queue [3]. Rather than
choose the largest element in the residual at each step, we pick an element from
a queue that stores all residual elements larger than τ/(nN). Note that once all
elements have been removed from the queue, the norm of the residual will be
less than τ . We have not conducted an error analysis to determine how many
steps are necessary to satisfy this condition, but empirically we find it performs
similarly. For the accuracy results below, we use the method with the queue.

6.2 Accuracy and Runtime

While we know that our method converges as the number of steps runs to infinity,
in Figure 2, we study the precision of approximate solutions. Recall that precision
is the size of the intersection of the set of indices of the k largest entries from
our approximation vector with the set of indices of the k largest entries from the
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Fig. 2. At left, the precision of the top 100 for the largest entries in a column of the
matrix exponential of the pgp graph (without the node’s immediate neighbors). We
show a boxplot summarizing the results over 50 trials. The “+” marks indicate outliers
outside of the 75th percentile. At right, we vary the number of steps of the method and
find we get high precision for the top-25 set on the large dblp graph (226,413 nodes)
after 1% of the work involved in a matrix vector product. This second plot is indicative
of results we see for other choices of the column as well. Solving to tolerance 10−5 takes
33% of the work of a matrix-vector product.

true solution, divided by k. In the vector exp{P}ec the entry with index c and
the entries corresponding to neighbors of node c are always large in both the
true and the approximate solution vectors and so artificially inflate the scores.
Because of this, we ignore those entries in both solution vectors and instead look
at the indices of the next k largest entries (excluding node c and its neighbors).

We show results for the pgp network (10k nodes) with a boxplot representing
50 random columns. The plot suggests that a residual tolerance of 10−4 yields
useful results in the majority of cases. We note that this figure represents the
worst results we observed and many graphs showed no errors at low tolerances.
Next, for a larger graph, we show how the precision in the top-k sets evolves for
the dblp graph (226k nodes) as we perform additional steps. Based on both of
these results, we suggest a residual tolerance of 10−5.

Next, we compare the runtime of our method using a heap (TSGS) and using
a queue (TSGSQ) to the runtime of three other methods solved to tolerance
of 10−5. We present the results for all 6 graphs. Each runtime is an average of
50 randomly chosen columns. Both EXPV and MEXPV are from ExpoKit [21]
where MEXPV is a special routine for stochastic matrices. The Taylor method
simply computes �3 log2(n)	 terms of the Taylor expansion. These results show
that TSGSQ is an order of magnitude faster than the other algorithms and this
performance difference persists over graphs spanning four orders of magnitude.
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Fig. 3. We show the average runtime of our methods (TSGS, TSGSQ) for 50 columns
of the matrix exponential selected at random compared with the runtime of methods
from ExpoKit (EXPV and MEXPV) and a Taylor polynomial approximation. Our
method with a queue is an order of magnitude faster.

7 Related Work and Discussion

Virtually all recent work on computing exp{A}b or even a single element of
exp{A} involves a Krylov or Lanczos approximation [21,4,20,1]. These methods
all have runtimes that are O(|E|), or worse, when the matrix comes from a
graph. Given our strong assumption about the scaling of the maximum degree,
it is possible that these algorithms would also enjoy sublinear runtimes and
we are currently studying their analysis. We are also currently searching for
additional work that may be related to our current local method to approximate
the exponential.

As mentioned before, the doubly logarithmic bound on the maximum degree
is unrealistic for social and information networks. We are currently working to
improve the bound and believe that using a residual in a weighted ∞-norm,
as used by Andersen et al. [3], may succeed. We also note that this method
outperforms state of the art Krylov solvers on networks with nearly 10 million
nodes and edges. Thus, we believe it to be useful independently of the runtime
bound. We are currently working to extend the analysis to functions of scaled
stochastic matrices, exp{αP} with α < 1, and the adjacency matrix, exp{A},
for other link prediction methods.
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